# TMVR in MAC: How I do It Pearls & Pitfalls

### Gorav Ailawadi, MD, MBA

Professor and Chair, Cardiac Surgery Helen & Marvin Kirsh Endowed Professor University of Michigan November 2023



# **Conflict of Interest Disclosures**

PI/ Steering Committee Roles

- Abbott-Co-PI SUMMIT Trial, Steering Committee- Repair MR Trial
- Edwards- Executive Steering Committee CLASP TR Trial, PI- MOMENTIS Trial
- NIH CTSN- Co-PI Concomitant Tricuspid During Mitral Surgery Trial, Steering Committee, Primary Trial
- Atricure- DSMB

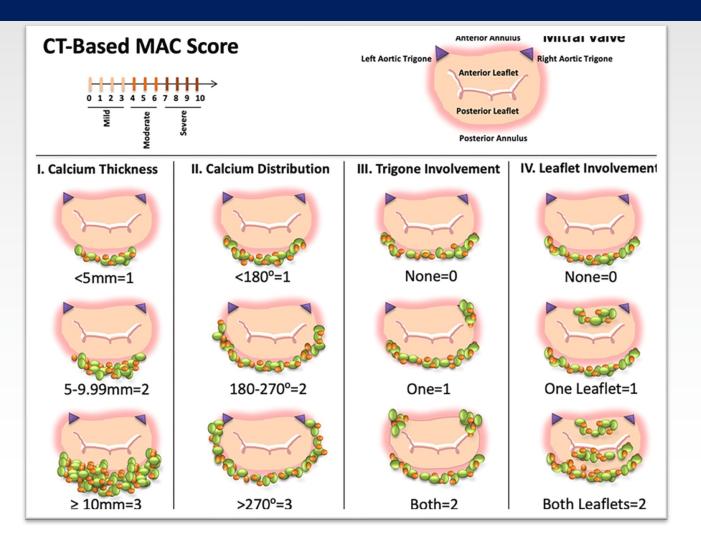
#### **Consultant Roles**

- Medtronic
- Abbott
- Edwards
- Gore
- Admedus
- Atricure
- Johnson & Johnson
- Philips
- JenaValve
- Arthrex
- CryoLife



# The MAC Epidemic

- Recognition of and referrals for MAC are increasing
- Highly variable pattern and severity
- MR: MAC can be incidental or cause of mitral disease
- MS: Severe MAC often the cause; can make MVR risky for AV groove disruption




# **Avoid This Complication!**





# **MAC Classification**





| Diagnosis, Classification, and Management of Patients With MAC:<br>Heart Valve Collaboratory Consensus Guidelines |                                                                                                                                         |                                                             |                                                                                              |                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Diagnosis and Classification                                                                                      |                                                                                                                                         | Treatment of Mitral Valve With MAC                          |                                                                                              |                                  |  |  |  |  |  |
| Diagnosis                                                                                                         | • TEE<br>• MDCT                                                                                                                         | Green MAC, Yellow MAC or Red MAC<br>for Different Therapies |                                                                                              |                                  |  |  |  |  |  |
| Classification<br>and<br>Anatomic<br>Risk                                                                         | <ul> <li>Annular Size</li> <li>MAC Score and<br/>Calcium Burden</li> <li>LVOT Obstruction<br/>Risk</li> <li>Sealing/PVL Risk</li> </ul> | Surgical<br>Replacement                                     | TMVR<br>in MAC                                                                               | Transseptal<br>or<br>Transatrial |  |  |  |  |  |
| Adjunctive<br>Therapies                                                                                           | <ul> <li>Septal Modification</li> <li>Leaflet Modification</li> <li>Surgical Myectomy</li> </ul>                                        |                                                             |                                                                                              | VIMAC                            |  |  |  |  |  |
| • With accep                                                                                                      | table anatomy, a 30-                                                                                                                    | day mortality                                               | important considerations in dev<br>≤10% can be achieved.<br>ts with MAC, and results are for |                                  |  |  |  |  |  |



#### Transcatheter Mitral Valve Replacement in Native Mitral Valve Disease With Severe Mitral Annular Calcification

#### **Results From the First Multicenter Global Registry**

Mayra Guerrero, MD,<sup>a</sup> Danny Dvir, MD,<sup>b</sup> Dominique Himbert, MD,<sup>c</sup> Marina Urena, MD,<sup>c</sup> Mackram Eleid, MD,<sup>d</sup> Dee Dee Wang, MD,<sup>e</sup> Adam Greenbaum, MD,<sup>e</sup> Vaikom S. Mahadevan, MBBS, MD,<sup>f</sup> David Holzhey, MD, PHD,<sup>g</sup> Daniel O'Hair, MD,<sup>h</sup> Nicolas Dumonteil, MD,<sup>i</sup> Josep Rodés-Cabau, MD,<sup>j</sup> Nicolo Piazza, MD,<sup>k</sup> Jose H. Palma, MD, PHD,<sup>1</sup> Augustin DeLago, MD,<sup>m</sup> Enrico Ferrari, MD,<sup>n</sup> Adam Witkowski, MD, PHD,<sup>o</sup> Olaf Wendler, MD, PHD,<sup>p</sup> Ran Kornowski, MD,<sup>q</sup> Pedro Martinez-Clark, MD,<sup>r</sup> Daniel Ciaburri, MD,<sup>s</sup> Richard Shemin, MD,<sup>t</sup> Sami Alnasser, MD,<sup>u</sup> David McAllister, DO,<sup>v</sup> Martin Bena, MD,<sup>w</sup> Faraz Kerendi, MD,<sup>x</sup> Gregory Pavlides, MD,<sup>y</sup> Jose J. Sobrinho, MD,<sup>z</sup> Guilherme F. Attizzani, MD,<sup>aa</sup> Isaac George, MD,<sup>bb</sup> George Nickenig, MD,<sup>cc</sup> Amir-Ali Fassa, MD,<sup>dd</sup> Alain Cribier, MD,<sup>ee</sup> Vinnie Bapat, MD,<sup>ff</sup> Ted Feldman, MD,<sup>a</sup> Charanjit Rihal, MD,<sup>d</sup> Alec Vahanian, MD,<sup>c</sup> John Webb, MD,<sup>b</sup> William O'Neill, MD<sup>e</sup>

CrossMark

CME

#### **Outcomes Poor With Percutaneous Sapien in MAC**

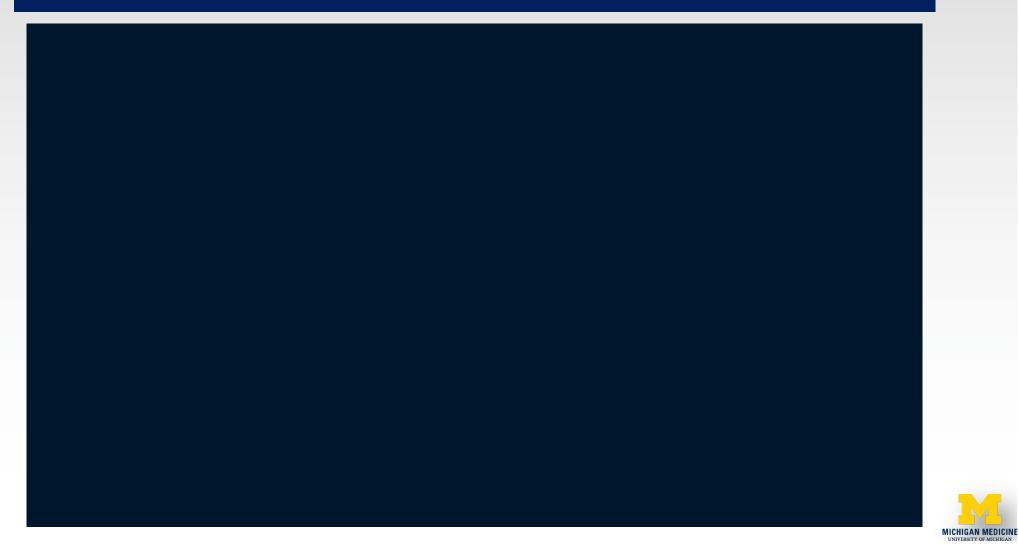
| Length of stay, days                              | $\textbf{17.7} \pm \textbf{18}$ |  |
|---------------------------------------------------|---------------------------------|--|
| 30-day/procedural death*                          | 19/64 (29.7)                    |  |
| Cardiovascular                                    | 8/64 (12.5)                     |  |
| LVOTO                                             | 2/64 (3.1)                      |  |
| LV perforation                                    | 2/64 (3.1)                      |  |
| Complete AV block                                 | 1/64 (1.56)                     |  |
| MI (air emboli due to pulmonary vein perforation) | 1/64 (1.56)                     |  |
| Stroke                                            | 2/64 (3.1)                      |  |
|                                                   |                                 |  |

JACC Cardiovasc Interv. 2016 Jul 11;9(13):1361-71.



### Benefits and Risks of Surgical Balloon Expandable Valves in MAC

Benefits


- Minimize Suture placement
- Less Debridement, Less risk of Annular Rupture
- Can be Performed MIS

Risks

- Sizing Critically Important
- PVL
- LVOTO Risk







## **Important Pearls**

- 1. Mitral Protocol CT: Ensure native annulus not too large MS preferred over MR
- 2. MAC must be 270- 360 degrees

Place conventional annular sutures in region of incomplete MAC

- 3. Remove Some of the Anterior Leaflet to Minimize LVOTO Risk Should leave good rim for seal
- 4. Place at least 4 annular sutures, but as many as feasible
- 5. Sizing: Use valve sizer or balloon size

I prefer to balloon as little as possible



## **Important Pearls**

- 6. Perform myectomy directly through LA if needed Use TEE to measure thickness
- 7. If MS, resect some papillary muscles to ensure good LV inflow
- 8. Circularize Landing zone with commissural closure/ "Felt Pillow" Overlap felt in commissures to convert D to circular landing zone
- 9. Orient Valve by marking commisures with atrial suture Perform before Crimping Valve
- 10. Land Valve at least 50% in Left Atrium
- 11. Be Gentle with Reballooning



# **MIS SITRAL**

Summary of study findings of balloon-expandable valve implantation in 51 patients with mitral valve disease complicated by mitral annular calcification (MAC)

**51 Patients** 

Mitral Valve Disease with MAC

Treated with Transatrial

Balloon-Expandable valve



UNIVERSITY VIRGINIA HEALTH SYSTEM

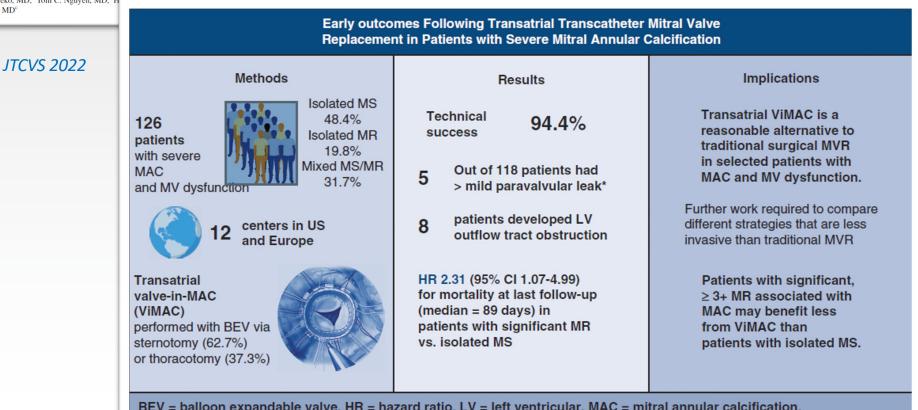
BEV, balloon-expandable valve; MAC, mitral annular calcification.

Smith & Ailawadi, JTCVS 2021

Technical Success 94% 30-day Mortality

13.7%

1-year Mortality 33.3%


Implications 1. Transatrial BEV in MAC is feasible in select patients. 2. Next steps: improve patient selection and outcomes.

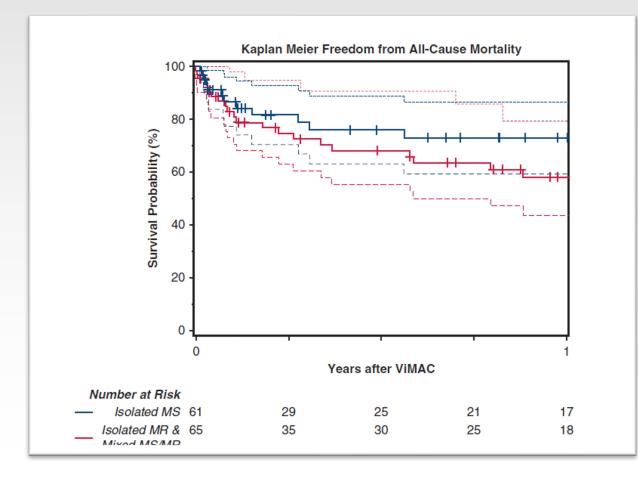


#### Early outcomes following transatrial transcatheter mitral valve replacement in patients with severe mitral annular calcification

Michael I. Brener, MD MS,<sup>a</sup> Mohanad Hamandi, MD,<sup>b</sup> Estee Hong, MS,<sup>c</sup> Alejandro Pizano, MD,<sup>d</sup> Morgan T. Harloff, MD,<sup>c</sup> Evan F. Garner, MD,<sup>f</sup> Abdallah El Sabbagh, MD,<sup>a</sup> Ryan K. Kaple, MD,<sup>h</sup> Arnar Geirsson, MD,<sup>1</sup> David W. Deaton, MD,<sup>J</sup> Abdallah El Sabbagh, MD,<sup>3</sup> Ramesh Veeregandham, MD,<sup>h</sup> Vinayak Bapat, MD,<sup>1</sup> Dawid W. Deaton, MD,<sup>J</sup> Xuming Ning, PhD,<sup>c</sup> Paul A. Kurlansky, MD,<sup>c</sup> Paul A. Grayburn, MD,<sup>m</sup> Tamim M. Nazif, MD,<sup>a</sup> Susheel K. Kodali, MD,<sup>a</sup> Martin B. Leon, MD,<sup>a</sup> Michael A. Borger, MD, PhD,<sup>a</sup> Raymond Lee, MD,<sup>c</sup> Keshav Kohli, MS,<sup>F</sup> Ajit P. Yoganathan, PhD,<sup>p</sup> Andrea Colli, MD, PhD,<sup>a</sup> Mayra E. Guerrero, MD,<sup>g</sup> James E. Davies, MD,<sup>f</sup> Kyle W. Eudailey, MD,<sup>f</sup> Tsuyoshi Kaneko, MD,<sup>c</sup> Tom C. Nguyen, MD,<sup>f</sup> H

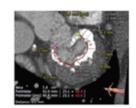
Isaac George, MD<sup>e</sup>




BEV = balloon expandable valve, HR = hazard ratio, LV = left ventricular, MAC = mitral annular calcification, MR = mitral regurgitation, MS = mitral stenosis, MV = mitral valve, MVR = mitral valve replacement

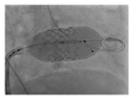


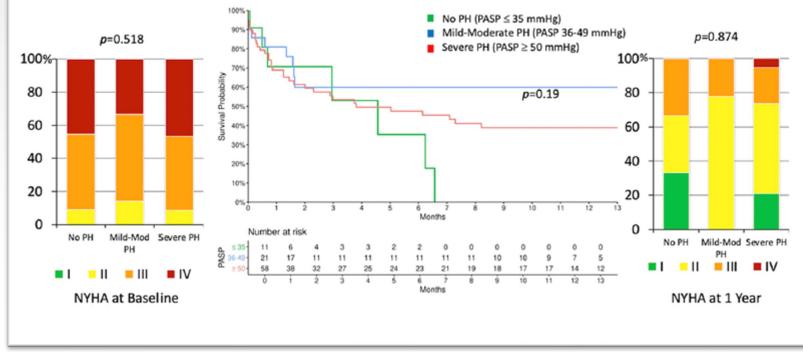
|                                         | Overall cohort<br>(n = 126) | Isolated MS $(n = 61)$ | Isolated MR<br>(n = 25) | Mixed disease<br>(n = 40) | P valu |
|-----------------------------------------|-----------------------------|------------------------|-------------------------|---------------------------|--------|
| Periprocedural outcomes                 |                             |                        |                         |                           |        |
| Technical success, n (%)                | 119 (94.4)                  | 60 (98.4)              | 20 (80.0)               | 39 (97.5)                 | .006   |
| In-hospital mortality, n (%)            | 14 (11.1)                   | 6 (9.8)                | 3 (12.0)                | 5 (13.2)                  | .87    |
| Device embolization, n (%)              | 0 (0.0)                     | 0 (0.0)                | 0 (0.0)                 | 0 (0.0)                   | .99    |
| Valve thrombosis, n (%)                 | 0 (0.0)                     | 0 (0.0)                | 0 (0.0)                 | 0 (0.0)                   | .99    |
| Repeat MV Surgery, n (%)                | 6 (4.8)                     | 1 (1.6)                | 4 (16.0)                | 1 (2.5)                   | .03    |
| Stroke, n (%)                           | 3 (2.4)                     | 3 (5.0)                | 0 (0.0)                 | 0 (0.0)                   | .43    |
| Myocardial infarction, n (%)            | 1 (0.8)                     | 1 (1.6)                | 0 (0.0)                 | 0 (0.0)                   | .99    |
| Hemolytic anemia, n (%)                 | 11 (8.7)                    | 5 (8.2)                | 3 (12.0)                | 3 (7.5)                   | .71    |
| Annular disruption, n (%)               | 3 (2.4)                     | 2 (3.3)                | 0 (0.0)                 | 1 (2.5)                   | .99    |
| Coronary compression, n (%)             | 1 (0.8)                     | 1 (1.6)                | 0 (0.0)                 | 0 (0.0)                   | .99    |
| Permanent pacemaker implantation, n (%) | 20 (15.9)                   | 12 (19.7)              | 1 (4.0)                 | 7 (17.5)                  | .22    |
| LV outflow tract obstruction, n (%)     | 8 (6.3)                     | 6 (9.8)                | 1 (4.0)                 | 1 (2.5)                   | .50    |
| Paravalvular leak, n/total n (%)        |                             |                        |                         |                           | .46    |
| None                                    | 73 (61.9)                   | 36 (59.0)              | 12 (60.0)               | 25 (67.6)                 |        |
| Trace                                   | 28 (23.7)                   | 18 (29.5)              | 5 (25.0)                | 5 (13.5)                  |        |
| Mild                                    | 12 (10.2)                   | 4 (6.6)                | 2 (10.0)                | 6 (16.2)                  |        |
| Moderate                                | 5 (4.2)                     | 3 (4.9)                | 1 (5.0)                 | 1 (2.7)                   |        |
| Severe                                  | 0 (0.0)                     | 0 (0.0)                | 0 (0.0)                 | 0 (0.0)                   |        |
| Major bleeding, n (%)                   | 18 (14.3)                   | 10 (16.4)              | 4 (16.0)                | 4 (10.0)                  | .74    |
| Hemodialysis,* n (%)                    | 10 (7.9)                    | 4 (6.5)                | 2 (8.0)                 | 4 (10.0)                  | .67    |




### **Patients With MR>3+ Do Worse**

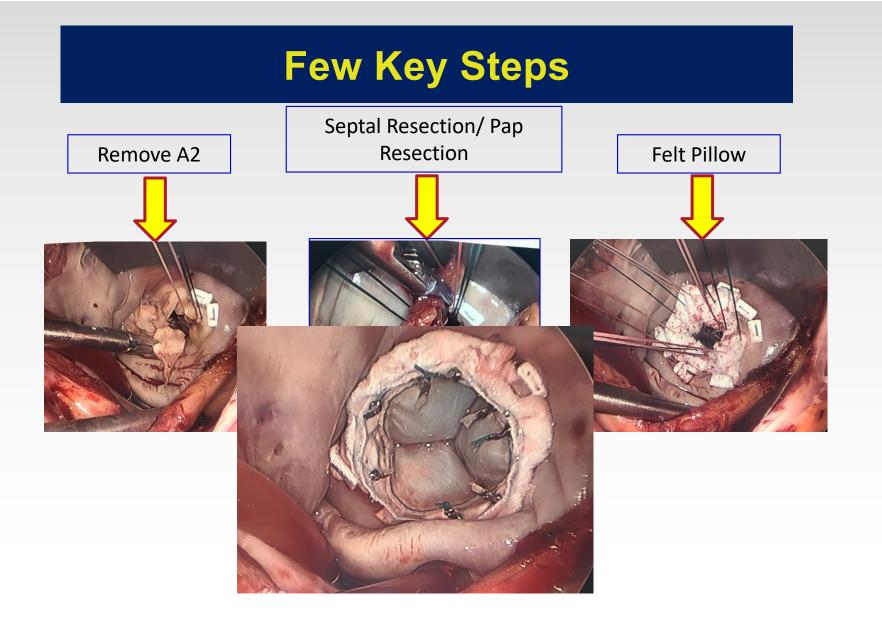






## PASP >50mm Hg No Impact on Risk



#### **Central Illustration**


Patients with severe pulmonary hypertension at baseline treated with Valve-in-MAC have similar survival and symptom improvement at 1 year compared with patients without pulmonary hypertension



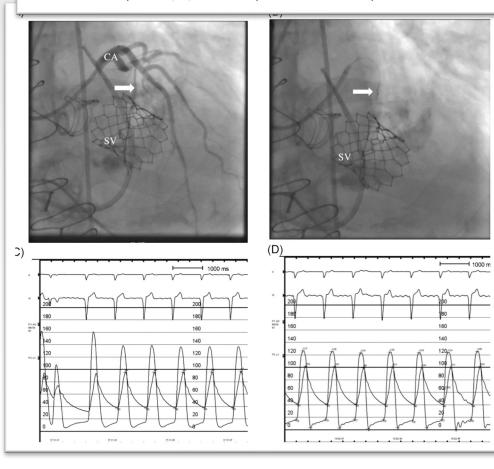




Cagijas and Guerrero. CCI 2022






DOI: 10.1111/jocs.14236



CASE REPORT

Septal ablation acutely reduces outflow obstruction after transcatheter mitral valve replacement

Aamir Javaid BS 0 | Zachary Tyerman MD | Jared P. Beller MD | Gorav Ailawadi MD





# **Pitfalls**

- 1. Avoid patients with severe PH (PASP> 70mmHg)
- 2. Avoid patients too frail, still overall high mortality at 1 year
- 3. Too large Annuli can result in PVL
- 4. Evaluate LVOTO risk carefully, Resection of septum common
- 5. Avoid SITRAL in patients on Steroids
- 6. Don't advertise this procedure, MAC not for the weary!



# Conclusions

- 1. Severe MAC is a morbid condition due to diastolic dysfunction, pulmonary hypertension, comorbidities
- 2. Conventional Surgery has risks of annular rupture
- 3. Future TMVR devices are preferred, but many patients excluded anatomically
- 4. Balloon expandable Valve in MAC more inclusive, and MS preferred over pure MR
- 5. Biggest risks are PVL and LVOTO
- 6. Operative and 1 year mortality are still high due to diastolic dysfunction and frailty

